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A Class of Symmetrical Condensed Node

TLM Methods Derived Directly from

Maxwell’s Equations
Joe LoVetri and Neil R. S. Simons

Abstract-A series of general transmission line matrix (TLM)-

type methods, which include the symmetrical condensed node
method, are derived directly from Maxwell’s curl equations

without recourse to transmission tine models. Written as a system

of conservation laws, Maxwell’s equations in 3-D plus time
are decomposed along the orthogonal characteristic directions
of a rectangular grid. The Riemann invariants in this method
correspond to the voltage pulses of the TLM method. A new
method of handling inhomogeneous media is proposed based on

a new transfer event. The dispersive nature of these schemes is

also investigated.

I. INTRODUCTION

T HE transmissim line matrix (TLM) method was pio-

neered by Johns and Beurle [1] for two-dimensional

waveguide scattering problems. The method can be considered

as a differential equation-based numerical method, capable of

providing an approximate solution to the time dependent form

of Maxwell’s equations in arbitrary media. The method is

traditionally viewed as a physical approximation in that the

space domain of an electromagnetic field problem is approxi-

mated by an orthogonal system of transmission lines, and the

exact solution for the voltage variables of the transmission

line problem is obtained. Tie solution to the original field

problem is then approximated by a mapping from the voltage

variables to the field variables of interest. A wide variety

of electromagnetic field problems have been analyzed using

the TLM method [2], [3], including the characterization of

microwave circuit components [4], and radar cross section

calculations [5].

Over the years, new versions of the method have been

developed in order to extend it to three dimensions and im-

prove the modeling of arbitrary inhomogeneous media. These

versions usually consisted of changing the topology of the

transmission lines used to approximate the physical problem.

The transmission line matrix method can be considered as: a

discrete form of Huygen’s principle [6], [7], an extension of

the lumped element techniques originated by Kron [8], or as

a physical model of mathematical finite differencing [9]–[11].

The most recent and widely used three-dimensional version

is the symmetrical condensed node method introduced by

Johns [12].

In this paper, a class of TLM-type algcmithms are derived

directly from Maxwell’s equations. It is shown that the curl

equations in conservation law form can be decomposed on

a discrete space-time grid as systems of equations governing

a series of orthogonally propagating plane waves. The new

variables which correspond to the voltage pulses in the TLM

method are the so-called Riemann invariants [13]. The fact

that these methods can be derived directly from Maxwell’s

equations without recourse to transmission line theory may

make them more appealing and understandable to practitioners

of electromagnetic modeling.

II. MAXWELL’S EQUATIONS IN THREE SPACIAL DIMENSIONS

The first step is to write Maxwell’s curl equations as

a system of hyperbolic conservation laws [14] – [16]. These

equations are then approximated in each cell of a discrete

numerical space-time grid as three systems of equations which

can be diagonalized by a transformation of variables. The curl

equations are written in conservation law form as

i3tu + AEi3zU + AF~vU + AGd.u = O

where

(1)

AE =

AF =
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and e = 1/E, m = l/LL and the solution vector u is the field The plane wave admittance and impedance in a computational,, ,.
vector cell are defined as

:1
Ez

EY

u= E.

Hz

HY

Hz

(3)

‘=:=: =E”E=+ ‘8)

It can be checked that LR = RL = I as required, and the

similarity transformations of AE, AF, and AG are written as

The symmetrization of AE, AF, and AG requires the

values of these matrices which can be calculated as

A={–l/Fiz, -@z, o,o, /iz., /Rz}

eigen-
L~AERE = LFAFRF = LGAGRG

= diag(~) = A. (9)

(4)
III. NUMERICAL APPROXIMATIONS

= {-c, -c, 0,0, c, c}
as well as the right and left eigenvector matrices,

which are calculated as

[

o 0/2 o 0 0
100010 1

R and L, Now if it is assumed that, in a computational cell, propaga-

tion along the x-direction involves no variation with respect

to the y- and z-directions, propagation along the y-direction

involves no variation with respect to the x- and z-directions,

and that propagation along the z-direction involves no varia-

tion with respect to the x- and y-directions, then equation (1)

can be approximated by the three systems of equations

dtu + AE8ZU = O, 8tu + AFi3yU = O

and i3tu + AG8:U = O . (lo)

(5)
Each of these equations can be uncoupled by diagonalizing the

matrices AE, AF, and AG. This is accomplished by the use

of the right and left matrices defined above. New variables v,

R~ =
010001
00

I

o @o o ‘
o Y o 0 o–Y

–Yo o 0 Y o
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L#fiooooo
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called Riemann invariants [13], are defined as
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[1 o 0 0 -z 01 [E.]

101020
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VG=LGU=—
2 00 0 0 0
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1._—
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1100

Ez – ZHY -

Ev + ZHZ

&Ez

fiHz

[

EY – ZHz

E.+ ZHY-

and are used in (2) to give

8tvF + AE8.VF = O,

0

—

z

‘G 1
‘t@

‘@3

‘/)(74

vG5

‘l&Ye

dt + Ajdv = o

and ~tvG + AG8ZVG = O

which are diagonalized systems of partial differential equa-

tions. The solutions are easily found as

vE~(~, t) = &($ – ~~t) , VF, (y, t) = f~i(y – A,t)

and vG~(~, t) = ~G,(~ – &t) ,

respectively, where the ,fE~, fFi, and fG~ are arbitrary func-

tions. When (z – ~~t) is constant, v~~ is constant; the lines

defined by the equations I’i : x – Ait= Const. are called the

characteristic directions. Now if initial conditions are given

for the vEi, vF%,, and vGi, then the .f.Ei, .fFi, and fa will be

known. That is,

fE(~) = vE($, O) = VEO = LEU(X, O) = LE~o

:1

E,(z, O) – ZH.(Z, O)

E.(z, O) + ZHV($, 0)

1 tiJ%(Lo)——
T tiHz(z, O) ‘

EV(X, O) + ZHz(z, O)

E.(z, O) – ZHV($, O)

fF(!/) = VF’(Y, 0) = UFO = LFU(Y, 0) = ~FUO

:1

E.(Y, 0) + .zHz(Y, 0)

E,(y, O) – ZHz(y, O)

1 fiEg(y, O)——
T @l+,(y,o) ‘

E.(y, O) – ZHz(y, O)

&(Y, O) + ZH.(Y,O)

fG(z) = VG(.Z, O)= VGO = LGU(Z, O) = LGUO

1]

E.(Z, o) – ZHY(Z, O)
Ev(.z, O) + ZH.(.Z, O)

1 fiEz(z, O)—_—
2 tiHz(z, O) “

Ey(z, O) – ZHz(.z, O)

E%(.z, O) + ZHY(.Z, O)
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The first Riemann invariant (RI), VE1 = 1/2 (Ev – ZHZ), is

constant on the line defined by 17_z : z + ct = Const. (–c

eigenvalue). Therefore, V& can be thought of as propagating

in the negative z-direction. The RI, V& = 1/2 (E. + ZHY),

propagates in the positive x-direction along the line defined

by 17+. : x – ct = K (c eigenvalue). The RI, V& = W&,

is constant on the vertical line 17m: x = K (0-eigenvalue).

That is, the field component normal to the direction of as-

sumed propagation does not change with time. This allows

for discontinuous normal components of the fields at the

interface between cells of different material constants. A

similar analysis can be performed for the y- and z-directions.

If a computational grid is used to approximate the fields and

the grid spacing is such that Axj = CjAt in cell j, then the

RI’s reach the cell interface after time At/2. The propagating

RI’s are renamed in order to explicitly denote the direction

of propagation and the polarization of the electric field. For

example, vEl and vE2 are renamed’@ and vLz, representing
left traveling waves in which the electric field is polarized

in the y- and z-directions, respectively. The first letter of the

descriptive labels leji, right, down, up, back and forward are

used to identify the six orthogonal directions. The propagating

RI’s are summarized in Table I.

These propagating RI’s can be represented as matrix mul-

tiplication of the fi~ld components as

v=

(14)

(15)

(16)

1.—
T

v

v:

1—_
2

EY – ZHZ

E, + ZHY

Ev + ZHZ
Ez – ZHY

E. + ZHz

E. – ZHz

E. – ZHz

Ez + ZHZ

Ez – ZHY

Ev + ZHW

Ev – ZHZ

Ez + ZHY

01000–2
001 0 z o
010 0 0 z
0010 –z o
100 0 0 z
001–200
1OOOO–Z
001 z o 0
1000 –z o
010 z o 0
010–200
100 0 z o

=Au.

(17)

The fact th this represents an overdetermined system of

equations is key to the derivation to follow. The vector

V can be calculated at any point in space and time. If

the field vector is known on a computational grid at time

t = tn, U(G, Yj, .Z~, tn) = u~k, then the RI’s which leave
each grid point can be calculated via (17) (see Fig. 1). Thus,
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TABLE I
SWVthIAR~ OF PROPAGATINGRIEMANN INVARIANTS

Old Notation

Cellular Field Riemann Invariants
Field

Representation
Characteristic Line New Notation out going in coming

Approximation (Ii = constant)

Field Variation in VE 1 1/2 (Ey – ZH. ) r-x:x +ct=K VLV V3 VI 1
x-Direction Only VEZ 1/2 (Ez + ZHV) (left) VL= % Vlo

VE5 1/2 (Ey + ZH. ) r+z:x–ct=K VRV VI 1 V3

VE6 1/2 (E. – ZHg) (right) VRZ V1 o V6

Field Variation in VF ~ l/2(Ez + ZHz) r_v:y+ct=K VDZ V1 V12
y-Direction Only VFZ 1/2 (& – ZH. ) (down) VD . V5 V7

VF5 l/2(Ez – ZH. ) r+y:y–ct=K vu. VI2 VI
vF6 1/2 (E. + ZH. ) (up) Vuz V7 V5

Field Variation in vGl 1/2 (E. – ZHY) r_z:z+ct=K VB= V2 V9

z-Direction Only VGZ 1/2 (EV + ZH. ) (back) VBY V4 vs

~G5 1/2 (Eg – ZH. ) r+z:z–ct=K VFY V8 V4

VG6 1/2 (E. + ZHV) (forward) VF . V9 V2

at t = to,the VO can be calculated from U“ and they

are propagated without attenuation or distortion to the cell

interface. Once they reach the cell boundaries (Z+ 1/2 points),

the RI’s must cross the interface. The principle which is used

to do this is that at the cell boundary points the tangential field

components must have unique values which are continuous

across the boundary. For example, at time t = t(n+l/2)-, the
RI’S VRU and VRZ reach the point (i + 1/2) from the pOint

(i), and the RI’s V~v and V~, reach the point (z + 1/2 ) from

the point (i + 1). The tangential fields at this point can be

determined as

which leads to

—

if Y.+l # Y~ and is

o
~
Yt+~+Y.

imply the tr

n+l/2~

——

%+1/2

“i1
v n+l/2–

V2

VRy
(19)

V& %+1/2

I’LM transfer event

n+l/2–

(20)

i+l/2

“1I
v n+l/2—

v;:
if Yi+l = Y,. Thus, (19) gives the proper form for transferring

vRy

the pulses through inhomogeneous media. Similar expressions

‘R’ i+l/2

can be obtained for the other pulses traveling in the y- and

z-directions. The RI’s then propagate from t = t(n+l/2)+

‘1

1 0 1 “
to t(m+l) - without change. Once they reach the integer grid

1010

T o Yi o

–Y, o Yi+l

72+1/2+

2+1/2

u

1 I
points, they are used to c~lculate the new outward propagating

Yt+l
RI’s. At time (n + 1) – the RI’s which are calculated for time

o
(n+ 1/2)+ reach the integer valued grid points, and again

the restriction that the field values defined at each grid point

should be uniquely defined by both the incoming as well as the
n+l+outgoing RI’s is imposed. If it is assumed that both V4j~ and

(18) vfi~l- are derived from (17), then symbolically the relations

n+l+can be written. Notice that it is not correct to write V,jk
—

equal to V~.jl since the defining equation is an overde-

termined system of linear equations. The procedure chosen

is to determine ufi.~l from VJ~l- and then V~jl+ from

u~~l. Since u~~~ is not uniquely defined by V~~l , an

appropriate generalized inverse matrix must be determined.
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The Moore–Penrose generalized inverse At V~~l - = UG.l

has the properties: 1) AAtA = A, 2) A*AAt = At, 3)

(AAf)H = AAT, and 4) (AtA)H = ATA, where AH denotes

the conjugate transpose of the matrix A [17]. It also turns out

that At is the inverse which minimizes the Euclidean norm of

u~jk. For the present case, this inverse can be calculated as (22)

(below) and it can be shown that (23) (below). It is required

to show that the chosen inverse matrix defines the field

values at the integer grid points uniquely and continuously:

“+1 = AtV~jl- = At V~~l+. The second property of the‘i~ k
Moore–Penrose generalized inverse is now used to determine

the relationship between the RI’s just before and just after the

time n + 1 by setting

~+1 = At V;jl- = AtAAtV;#- = At (AAt + ~) V;jl-Uijk

(24)

where any matrix, l?, in the null-space of At, say, B ~

N (At), is added to AAt. Thus, a scattering event defines
n 1+the relationship between V~~l- and Vij~ as

where the matrix S is defined as

S= AAt+B. (26)

Accepting both expressions (25) would result in the possible

contradiction

V;;l+ = sv;;l- ‘s(sv~f+)‘S2V:$1+’’27)

I
o 000101010 01
1 010000001 10

At= (ATA)-lAT = ~
:::; O1O1OO 00O–YOYOY–YO

[

o YO–YOOO O–YOOY
–YOYOYO –Yo o 0 0 0

(22)

2000 –10100110
02000101 –1 o 0 1
002010 –100110
000201011 00–1
-101020001 001
010102000 –1 1 0
10 –10002010 01
010100020 1 –1 o
0 –101101020 00
10100 –1010200
1010010 –10020
010–11010 0002

and AtA = I. (23)

B.=cY

–2 o 0 0 –10100110
o –2000101 –1 o 0 1
00 –2 o 1 0 –100110
000 –20101100–1

–1 o 1 0 –20001001
01010 –2 o 0 0 –1 1 0
10 –1 o 0 0 –201001
0101000–2 01–10

o –1011010 –2 o 0 0
10100 –1 o 1 0 –2 o 0
1010010 –1 o 0 –2 o

010 –11010000–2

(28)
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In general, the left side of (25) is chosen since a

scheme to move forward in time is desired, but it will

be shown that for a particular choice of the B matrix,

both expressions in (25) can be satisfied. A series of

symmetric matrices, {B@ IB~ e N (At), a E ‘R}, can be

determined as (28) (shown on the previous page) and the

symmetric scattering matrix becomes (29) (below). When a =

1/4, the scattering matrix becomes (30) (below), which can be

compared to the symmetrical condensed node TLM method as

follows. In the traditional TLM method, the voltage pulses are

not denoted by their propagation direction but rather by their

location in each cell. The voltage puises are numbered from 1

to 12 and are scattered according to

Vtlm = Stlmvttm (31)

where Vtlm is the vector of pulses VI to VIZ. A transformation

from Vtlm to the RI’s defined herein can be defined by the use

of Table I. In the present case, we can write

Vout = CJvin (32)

where the extra notations out and in have been used to identify

the fact that the transformation to the old notation is not the

+Oi

2000 –10100110
02000101 –1 o 0 1
002010 –100110
000201011 00–1

–10102000 1001
010102000 –110
10 –10002010 01
01010002 01 –1 o
0 –10110102 000
10100 –1010200
1010010 –10020
010–110100 002

–2 o 0 0 –10100110
o –2000101 –1 o 0 1
00 –2 o 1 0 –100110
000 –20101100 –1

–1 o 1 0 –20001001
01010 –2 o 0 0 –1 1 0
10 –1 o 0 0 –201001
0101000 –2 o 1 –1 o
0 –1011010 –2 o 0 0
10100 –1 o 1 0 –2 o 0
1010010 –1 o 0 –2 o
010–110100 00–2

(29)

0000 –10100110
00000101 –1 o 0 1
000010 –100110
000001011 00–1

–10100000 1001
01010000 0–110
10–100000 1001
010100000 1 –1 o
0 –10110100 000
10100 –1010000
1010010 –10000
010–110100 000

(30)
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same for each of these. That is,

@ = A
m/tlmvil?n , Vtlm = Atlm/out VOut (33)

4n/t2m =

Atlm/Out =

000000000010
000000000100
001000000000
000001000000
00000000000 1
00000010000 0
10000000000 0
00001000000 0
00000000100 0
00000001000 0
00 0 1 0 0 0 0 0 00 0
01000000000 0

00 0 0 1 0 0 0 0 00 0
00000000100 0
10000000000 0
00000000010 0
00000100000 0
0 1 00 0 0 0 0 0 00 0
00000001000 0
00000000001 0
00000000000 1
00 0 1 0 0 0 0 0 00 0
00 1 0 0 00 0 0 0 0 0
00 0 0 0 0 1 0 0 00 0

(34)

and we can express the traditional TLM scattering matrix in

terms of the present scattering matrix as (35) (below). Since

any of these scatter@g matrices defined by (26) will satisfy

the condition for uniquely defined fields at the integer grid

points, some other method of determining the appropriate S’a

isrequired. One appealing technique is to consider the energy

1425

flowin thepropagating waves, Recall that the Poyntingvector,

detinedas P= ExHcanbe writtenas

P=(E#z-EzHy)i& +(EzHz–EJIz)iiv

+(EJry– EyH.)az =1’.a.+~yag +~zaz

(36)

where P%, Py, and Pz denote the energy densities flowing

in the x-, y-, and z-directions, respectively. The plane wave

propagation assumption relates the electric field in each RI to

the magnetic field yiathe plane wave impedance, that is,

Et = +ZHC (37)

where the sign is chosen such that E( x (+HC) defines the

direction of~ropagation by the right-hand rule. Forexamlple,

left traveling plane waves (i.e., negative o-direction) give

Eg = -2 H,. Using this approximation, the sum of the

squares of the RI’s traveling in the same direction can be

shown to be proportional to the energy density traveling inthe

same direction, that is,

E2–2ZEVHZ+Z2H; +E;+2ZEZHV+ Z2H;

E%2ZEYHZ+ Z2H;+E; –2ZE,HV +Z2H:

EY+2ZEaH,+ Z2H:+E:–2ZEzHz +Z2H:

“ E~–2ZEzHz+ Z2H:+E;+2ZEZHZ +Z2H;

E:–2ZEzHg+ Z2H2+E2+2ZEVHZ +Z2H;

E;–2ZEVHZ+ Z2H:+E~+2ZEzHy +Z2H2 Y .

11

–P$

P.

=2 –Ppy (38)

–;.

Pz

stlm=Atlm/outsAin /tlm= ~

011000001 o–lo
100001000 –1 o 1

10010001 000–1
001010 –100010
0001010 –10100

01001010 –1 o 0 0

000 –10101010 o
0010–1010 0010
10000–100 0101
0 –10010101 000

–looloooi 0001
01 –10000010 10

(35)
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Fig.1. RI’spropagating oncomputational grid {(i, j,k)}.

Thus, the total energy density leaving a node can be

represented as the Euclidean norm of the RI’s. If the scattering

matrix is chosen such that the total energy density entering a

grid point is equal to the total energy density leaving that grid

point (i.e., after the scattering event), then this produces the

relations IIV~~l+ II~ = IISa Vfi.jl– II~ = IIV~.~l– II~, which can

be written as

since S’a is symmetric. One possible condition on the scatter-

ing matrix which satisfies this requirement is that S: = I. If

S; is expanded for any a, it will be found that the diagonal

terms are all 8@2 + 1/2, and the off-diagonal terms are

all either –4@2 + 1/4, 4a2 – 1/4, or O, and therefore this
leads to the result that {8Q2 + 1/2 = 1, –4ci2 + 1/4 = O} ~

a = +(1/4) with associated scattering matrices given by

S_ljA = 1 and S’lil given by (26). The first matrix results

in no scattering at all, while the second results in the same

scattering matrix as in the traditional TLM method (with the

notational differences discussed previously.) Notice that this

choice of scattering matrix allows the satisfaction of both

expressions (25) since now choosing V$~l - = S114V~~l+

as well as V~.~l – = S1/4V~.~1+ implies

which is now not a contradiction. Thus S114 determines the

reverse process as well as the forward process.

IV. FINITE DIFFERENCE EQUIVALENTS AND

DISPERSION/DISSIPATION ANALYSIS

For the case where Zj = Zj+l = Z~ = Z~+l = z, the

transfer event can be written as

——

(Vh)i+l,j,k

(vL~)i+l,j,k

(v&)i-l,j,k

(v%)i-l,j,k

(vDz)i,j+l,k

(v~~)i,j+l,k

(v~z)i,i_l,k

(Wz)i,j-l,k

O%z)i,j,k+l

(v~Y)i,j,k+l

(v~Y)i,j,k-l

(v~~)i)j,k-l

= Cv;’ (41)

where C is the diagonal matrix of forward and backward shift

operators (i.e., S;l represents a shift of – 1 units in the ~-

direction). The equations developed thus far are combined to

give

“+1 = AtV;jl+ = AtV& = AtC@Ui~k

= A*(7SV;; = AtC(AAt + ~) (v;;)

= (AtCAAt + ATCB) (v;;)

= (AtCAAt + Atc~) (A(z&))

- (AtC(AAtA) + AtCBA) (U;k).

= (AtcA + AtCBA) (u:,). (42)

Now, not only is B ● lV(At), but A ~ AT(B), and (42)

becomes

“+1 = AtCA(u;k) .Ui ,jk (43)

Notice that in the field formulation, the eflect of the B matrix

is lost. Therefore, a one-time step finite difference scheme

can only represent the TLM method if So is used, and a TLM

method with a other than zero cannot be represented by a one-

time step finite difference scheme. Notice that in [9], Johns

states that there is no one-time step scheme for the traditional

(a= 1/4) method. A two-time level scheme can be written

by following the same procedure as in (42), but continuing the

procedure for one more time level. Thus,
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Fig. 2. Dispersion of Gaussian plane wave pulses.

IQ’ = (AtCAAt + Atc~) (v;;)

() ()
= AtcAAt v;; + AtcB v;;

()
= AbAA%Au& + AtCB V;;

= AtCA (u;k) + A+cB (v!j
)

= AtCA(u;k) + AtCBC(V:;l+)

= AtCA(t.L;k) + AtCBCS(V;;l’
)

= AtCA(u;k) + AtCBC(AAt + B) (V;; ’-)

—— AtCA(u;k) + AtCBCAAf’ + AtCBCB

= AtcA(u;k) + (AtCBCAAt + AtCBCB)

= AtcA(Upjk) + (ATCBCAA~A + ATCBCBA)

(44)

and again, using AAtA = A and BA = O, we get

U:.:1 = ( ijlc ) (45)AtCA(u;k) + AtcBcA u~-l

in which, now, the effect of the B matrix is evident. This con-

stitutes the equivalent finite difference two-time step scheme

for the generalized TLM methods.

The dispersion/dissipation effects of the derived schemes

have been investigated by applying the to a propagating

Gaussian pulse plane wave (see Fig. 2). The plane wave is

assumed to propagate axially through the mesh, and was

generated using the TLM total/scattered field formulation

discussed in [5], Notice that, except for the case where Q =

1/4 (standard TLM), the schemes exhibit dissipation, This also

follows from the energy conservation used in deriving the 1/4

scheme.

I’VLI

V. CONCLUSIONS

A Series of TLM-type algorithms have been derived ,di-

rectly from Maxwell’s equations using the approximation

that disturbances within a computational cell, given by the

Riemann invariants, travel as a series of plane waves in the

orthogonal directions. This analysis derives not only one but an

infinite number of TLM-type methods, based on a parameter a,

with one being equivalent to the symmetrical condensed node

method (a = 1/4). The use of the principle of conservation

of power density on the scattering matrices imposes the value

of 1/4 on a. A general formulation of the equivalent finite-

difference schemes for these methods has been given, and all

but one (Q = O) correspond to a two-time level scheme. Each

of these methods gives different dispersion and dissipation

characteristics which have been investigated numerically.
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