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A Class of Symmetrical Condensed Node

TLM Methods Derived Directly from
Maxwell’s Equations

Joe LoVetri and Neil R.S. Simons

Abstract—A series of general transmission line matrix (TLM)-
type methods, which include the symmetrical condensed node
method, are derived directly from Maxwell’s curl equations
without recourse to transmission line models. Written as a system
of conservation laws, Maxwell’s equations in 3-D plus time
are decomposed along the orthogonal characteristic directions
of a rectangular grid. The Riemann invariants in this method
correspond to the voltage pulses of the TLM method. A new
method of handling inhomogeneous media is proposed based on
a new transfer event. The dispersive nature of these schemes is
also investigated.

I. INTRODUCTION

HE transmission line matrix (TLM) method was pio-

neered by Johns and Beurle [1] for two-dimensional
waveguide scattering problems. The method can be considered
as a differential equation-based numerical method, capable of
providing an approximate solution to the time dependent form
of Maxwell’s equations in arbitrary media. The method is
traditionally viewed as a physical approximation in that the
-space domain of an electromagnetic field problem is approxi-
mated by an orthogonal system of transmission lines, and the
exact solution for the voltage variables of the transmission
line problem is obtained. The solution to the original field
problem is then approximated by a mapping from the voltage
variables to the field variables of interest. A wide variety
of electromagnetic field problems have been analyzed using
the TLM method [2], [3], including the characterization of
microwave circuit components [4], and radar cross section
calculations [5].

Over the years, new versions of the method have been
developed in order to extend it to three dimensions and im-
prove the modeling of arbitrary inhomogeneous media. These
versions usually consisted of changing the topology of the
transmission lines used to approximate the physical problem.
The transmission line matrix method can be considered as: a
discrete form of Huygen’s principle [6], [7], an extension of
the lumped element techniques originated by Kron [8], or as
a physical model of mathematical finite differencing [9]—-[11].
The most recent and widely used three-dimensional version
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is the symmetrical condensed node method introduced by
Johns [12].

In this paper, a class of TLM-type algorithms are derived
directly from Maxwell’s equations. It is shown that the curl
equations in conservation law form can be decomposed on
a discrete space-time grid as systems of equations governing
a series of orthogonally propagating plane waves. The new
variables which correspond to the voltage pulses in the TLM
method are the so-called Riemann invariants [13]. The fact
that these methods can be derived directly from Maxwell’s
equations without recourse to transmission line theory may
make them more appealing and understandable to practitioners
of electromagnetic modeling.

II. MAXWELL’S EQUATIONS IN THREE SPACIAL DIMENSIONS

The first step is to write Maxwell’s curl equations as
a system of hyberbolic conservation laws [14]—[16]. These
equations are then approximated in each cell of a discrete
numerical space-time grid as three systems of equations which
can be diagonalized by a transformation of variables. The curl
equations are written in conservation law form as

Ou + Apd.u + Apay’u, +Agd,u=0 1)
where
([0 o0 0 0 0 O
00 0 0 0 e
A= |0 0 0 0 — 0
E=1o 0 0 0o 0 ol
0 0 —-m 0 0 0
0m 0 0 0 0
0 0 0 0 0 —e
0 0 0 00 0
Ao—] 0 0 0 e0 0
F=1 0o 0o m 00 0]}
0 0 0 0 0 0
|-m 0 0 0 0 0
0 0 0 0 e O
0 0 0 — 0 0
o 0 0 0 00
A4e=10 _,u 0 0 00 )
m 0 0 0 0 0
(0 0 0 0 0 0
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and e = 1/, m = 1/ and the solution vector u is the field
vector
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The symmetrization of Ag, A, and Ag requires the eigen-
values of these matrices which can be calculated as

A = {—Vme,—v/me,0,0,v/me,/me }
= {-¢,—¢,0,0,¢,c} 4

z

as well as the right and left eigenvector matrices, 12 and L,
which are calculated as

0 0 +v2 0 0 0
1 0 0 0 1 o0
R.—| 0 1 0 0 0 1
E 0 0 0 v2 0 0|’
0 Y 0 0 0 -Y
-Y 0 0 0 Y 0]
0o 10 0 0 =Z]
0 01 0 Z 0
1{vV2 00 0 0 0
Lp=—
E=%10 00 v2 0 o] )
0o 10 0 0 Z
L0 01 0 —-Z 0]
(1 o o 0 1 0]
0 0 v2 0 0 0
R.—|0 1 0 o0 o0 1
F 0 -Y 0 0 o0 Y|’
0 0 0 V2 0 0
Y o o0 0 -Y o]
1 6 0 0 0 Z
0 0 1 —-Z 0 0
110 v2 0 0 0 0
Lp=—
F=9 1o o o o +v2 o |’ ©
1 0 0 0 0 -2
0 0 1 Z 0 0
1 0 0 0 0 1
0 1 0 0 1 0
R.—| 0 0 V2 0 0 0
¢ 0 Y 0 0 -Y ol
-Y 0 0 0 0 Y
0 0 0 V2 0 0
10 0 0 -Z 0
01 0 Z 0 0
1o o v2 0 0 0
Lg=— )
“~921o00 0 0 0 V2 )
01 0 -Z 0 0
10 0 0 Z 0
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The plane wave admittance and impedance in a computational
cell are defined as

Y:E:ﬂ: ﬁ: i:i and
e c e \/u VA
c e e 7 1
= —_—= — = —_ = _— =, 8
4 m oz m 3 Y ®

It can be checked that LR = RL = I as required, and the
similarity transformations of Ag, Ar, and Ag are written as

LEAERE = LrArpRp = LgAgRG
= diag()\) = A. ©)

III. NUMERICAL APPROXIMATIONS

Now if it is assumed that, in a computational cell, propaga-
tion along the z-direction involves no variation with respect
to the y- and z-directions, propagation along the y-direction
involves no variation with respect to the z- and z-directions,
and that propagation along the z-direction involves ro varia-
tion with respect to the z- and y-directions, then equation (1)
can be approximated by the three systems of equations

ou+ AgO,u =20 Ou+ Apdyu =0

and Gu+ Agd,u=0. (10)
Each of these equations can be uncoupled by diagonalizing the
matrices Ag, Ar, and Ag. This is accomplished by the use
of the right and left matrices defined above. New variables v,
called Riemann invariants [13], are defined as

0o 10 0 0 -Z|[E,]
0o 01 0 Z 0 E,
1/v2 00 0 0 O0]||E
=L = — %
PEELEYES 00 000 V2 0 0 || He
0 10 0 0 Z||H,
|0 01 0 -Z 0]|H.)]
'E, - ZH, Vg
E ZH VE?2
_ 1 \/—E | vEs
Ey+ZHz VEs5
—ZHy VEe6
't 0o o 0o o Z]|[BE,
0 0 1 -Z 0 0 E,
1o v2 0 0 0 © E
:L = — z
PE=SFU=500 0 0 0 V2 0 || Hz
1 0 0 0 0 -Z||H,
0o 0 1 Z 0 0| H,
E.+ZH Uy
EZ—ZH vE2
_ 1 \/—2-Ey _ | VF3
o 2 \/§Hy - VEp4 (12)
Ex—ZHZ VfEs
E,+7ZH VFg
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1 0 O 0 -Z 0 E,
01 0 Z 0 0 E,
1{o 0 +v2 0 0 O E
= L - — z
PeECYT 00 0 0 0 V2||H
01 0 —-Z 0 0 H,
11 0 0 0 VA 0| H:]
'Em—ZHy' -'UGl—
Ey+ZHw VG2
_ 1 \/iEz _ | YGs
- 2 \/in N VG4 (13)
Ey—ZHm VG5
Em+ZHy L VGé
and are used in (2) to give
Owvr + AgO,vr = 0, O + Apay =0

and Qg + Agd,vg =0

which are diagonalized systems of partial differential equa-
tions. The solutions are easily found as

vgi(e,t) = fmi(ez — Ait),  vr(y,t) = fri(y — Ait)
and vgi(z,t) = fa.(z — Nit),

respectively, where the fg;, fri, and fg; are arbitrary func-
tions. When (z — A;t) is constant, vg; is constant; the lines
defined by the equations I'; : z — A\;t = Const. are called the
characteristic directions. Now if initial conditions are given
for the vg;, vp,,, and vg;, then the fg;, fr;, and fg; will be
known. That is,

fE(.’L') = 'vE(m,O) =VEo = LEu(m,O) - LE’LLO

Ey(z,0) — ZH,(x,0)
E.(z,0)+ ZH,(z,0)

1 V2 E,(z,0)
=3 V2 Ha(z,0) , (14)
Ey(z,0) + ZH,(z,0)
E,(z,0) — ZH,(z,0)
Fr(y) = vr(y,0) = vpo = Lpu(y,0) = Lruo
E.(y,0) + ZH,(y,0)
Ez(ya 0) - ZHz(ya 0)
B 2 ﬁHy(:’/?O) ’
Ey(y,0) — ZH:(y,0)
E.(y,0) + ZH,(y,0)
fg(z) = vg(Z,O) = vgo = LGu(z,O) = Lgug
E4(2,0) — ZH,(z,0)
F,(2,0) + ZH,(2,0)
_ 1 V2 E.(2,0)
3| VIH.(,0) (16)

Ey(2,0) — ZH,(2,0)
E.(2,0)+ ZH,(#,0)
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The first Riemann invariant (R1), Vg1 = 1/2(E, — ZH,), is
constant on the line defined by I'_, : 4 ¢t = Const. (—c
eigenvalue). Therefore, Vg1 can be thought of as propagating
in the negative z-direction. The RI, Vge = 1/2(E, + ZH,),
propagates in the positive z-direction along the line defined
by 'y : ¢ — ¢t = K (c cigenvalue). The RI, Vgz = V2 E,,
is constant on the vertical line I', : z = K (0-eigenvalue).
That is, the field component normal to the direction of as-
sumed propagation does not change with time. This allows
for discontinuous normal components of the fields at the
interface between cells of different material constants. A
similar analysis can be performed for the y- and z-directions.
If a computational grid is used to approximate the fields and
the grid spacing is such that Az, = ¢, At in cell j, then the
RI’s reach the cell interface after time A¢/2. The propagating
RI’s are renamed in order to explicitly denote the direction
of propagation and the polarization of the electric field. For
example, vy and vge are renamed vr, and v, representing
left traveling waves in which the electric field is polarized
in the y- and z-directions, respectively. The first letter of the
descriptive labels left, right, down, up, back, and forward are
used to identify the six orthogonal directions. The propagating
RD’s are summarized in Table I.

These propagating RI’s can be represented as matrix mul-
tiplication of the field components as

[V, [E, - ZH, ]
VLz Ez+ZHy
Vay E,+ ZH,
Vs E.- ZH,
VDw Ex+ZHz
V = VDz _l Ez—ZHm
B VUz B 2 Em_ZHz
VUz Ez+ZHac
Vba E, - ZH,
VBy Ey-I-ZHw
Vry E,-7ZH,
| Vre | | B+ ZH,|
(0010 0 0o —Z
0 01 0 VA 0
010 O 0 VA
001 0 -Z o|[E,
100 0 0 Z||E
_ljoo 1 -z 0o 0 ||E|_,,
“ 2100 o0 0 7| |H: ’
001 Z 0 0||H,
100 0 —-Z 0 H,
010 Z 0 0
010 —-Z2 0 0
100 0 Z 0]
(17)

The fact that this represents an overdetermined system of
equations is key to the derivation to follow. The vector
V can be calculated at amy point in space and time. If
the field vector is known on a computational grid at time
t = ", u(x, Y5, 26, 1) = ufyy, then the RI’s which leave
each grid point can be calculated via (17) (see Fig. 1). Thus,
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TABLE 1
SUMMARY OF PROPAGATING RIEMANN INVARIANTS
Old Notation
Cellular Field Riemann Invariants R rfsi:ﬁ tion Characteristic Line New Notation out going in coming
Approximation P 2 (K = constant)
Field Variation in Ve 1/2(Ey—ZH.) T_::zx+c=K Viy V3 Vi1
xz-Direction Only Vi 1/2(E. + ZHy) (left) VLz Ve Vio
Ves 1/2(E, + ZH;) Tip:x—ct=K Vry Vi1 V3
Vie 1/2(E. — ZHy) (right) Vi Vio Ve
Field Variation in Vi1 1/2(B; +ZH,) T—_y:y+ct=K VDe Vi Vi
y-Direction Only %2> 1/2(E, — ZH,) (down) Vp: Vs Vaz
Vrs I/Z(Ez —ZHZ) F+y : y——-ct:I&’ VUue Via Vi
Vre 1/2(E: + ZH;) (up) Vo s Wz Vs
Field Variation in Va1 1/2(B; —ZH,) T-.:z+c=K Vax Va Vo
z-Direction Only Vs 1/2(Ey, + ZHy) (back) VBy Vi Vs
Vs 1/2(Ey — ZH,) Tyrziz—ct=K Vey Vs Va
Vas 1/2 (E.r + ZHy) (forward) Vre Vo Va
at t = 9, the VO can be calculated from u° and they Y2Yzi+1y 0 §+1J—r; 0
are propagated without attenuation or distortion to the cell “”b A 1*6 Y oy,-Y,
interface. Once they reach the cell boundaries (¢4 1/2 points), YeeYis Yoy +Y, oy Yi+1tYe
the RI’s must cross the interface. The principle which is used YoiY, 0 S AE 0
to do this is that at the cell boundary points the tangential field 0 %%’7‘ 0 Yily
components must have unique values which are continuous
across the boundary. For example, at time ¢ = t(n+1/2)7 the V. n+1/27
RI’s Vg, and Vg, reach the point (i 4+ 1/2) from the point Viy
. . . z
(1), and the RI’s V,, and Vz, reach the point (i + 1/2) from (19)
. Y . R Vry
the point (¢ + 1). The tangential fields at this point can be
. Vs +1/2
determined as *

n+1/2

E'y 1 0 1 0
E, _i 0 1 0 1
H, 2 0 Yov1 0 -Y;
H, +1/2 Yiia 0 Y; 0
n+1/2—
VLy
VLz
Vry
VRZ i+1/2
1 0 1 0
_l 0 1 0 1
a 2 0 }/; 0 L1
=Y, 0 Y 0
n+1/2%
W
Lz
18
Ve (18)
VE: vt1/2

which leads to

n+1/2%

1/2

if Y,41 # Y; and is simply the traditional TLM transfer event

n+1/2+ n+1/27
i i
Lz Lz
= 20
Vg Vg (20)
Vs ++1/2 Vre i+1/2

if Y; 11 = Y,. Thus, (19) gives the proper form for transferring
the pulses through inhomogeneous media. Similar expressions
can be obtained for the other pulses traveling in the y- and
2-directions. The RD’s then propagate from ¢ = ¢(+1/2)"
to ™™+t without change. Once they reach the integer grid
points, they are used to calculate the new outward propagating
RI’s. At time (n + 1)~ the RI’s which are calculated for time
(n+1/2)" reach the integer valued grid points, and again
the restriction that the field values defined at each grid point
should be uniquely defined by both the incoming as well as the
outgoing RI’s is imposed. If it is assumed that both V:.’j*,;ﬁ and
1 are derived from (17), then symbolically the relations

" -
VZ",;l :Au:ﬁ? and V?j,:l = Au™t!,

15k (21)

. . .. . +
can be written. Notice that it is not correct to write V™11

27k
equal to ij*,;l since the defining equation is an overde-

termined system of linear equations. The procedure chosen

. . n+1 n+41" n+41F
is to determine w7~ from V% and then V3 from
uf]f Since u:‘j,;l is not uniquely defined by V?jﬁl , an

appropriate generalized inverse matrix must be determined.
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The Moore—Penrose generalized inverse ATVl = = uij
has the propemes 1) AATA = A4, 2) ATAAT = At 3)
(AAT) = AAY, and 4) (ATA) = AT A, where A¥ denotes
the conjugate transpose of the matrix A [17]. It also turns out
that AT is the inverse which minimizes the Euclidean norm of
u;;,. For the present case, this inverse can be calculated as (22)
(below) and it can be shown that (23) (below). It is required
to show that the chosen inverse matrix defines the field
values at the integer grid pomts uniquely and continuously:

uptt = AtV = ATV"Jrl The second property of the
Moore— Penrose generahzed inverse is now used to determine
the relationship between the RI’s just before and just after the
time n 4 1 by setting

1423

= AtV = ATAANYVIAL = AT(AAT 4 B)VEY

ijk
(24)

where any matrix, B, in the null-space of A', say, B €
(AT), is added to AA'. Thus, a scattering event defines

the relationship between V;‘J*,;l and V:‘J};l as
VIR = gyt o VI =gviit (29
where the matrix S is defined as
S=AA"+B. (26)

Accepting both expressions (25) would result in the possible
contradiction

Wil = ATVEET = ATAATVIE = At(AdT 4 B)VEET VIR = SVEEY = s(svit) = sVt @)
0o 00 0 1 0 1 0 1 0 0 1
1 01 0 0 0O O 0 0 1 1 0
t_qatpy-iur_ 10 1.0 1 0 1 0 1 0 0 0 O ,
AT = (474) A“z 0 00 0 0 -Y 0 Y 0 Y -Y o (22)
6 Y 0 -Y o 0 0O 0 -Y 0 0 Y
-Y 0Y 0 Y 0 -Y 0 0 0 0 O
2 0 0o 0o -1 0 1 0 0 1 1 0]
0o 2 0 o0 0 1 0 1 -1 0 o0 1
0o 0 2 0 1 0 -1 0 0 1 1 o0
0 0o 0 2 0 1 0 1 1 0 0 -1
-1 0 1 0 2 0 o0 O 1 0 o0 1
~1}l0 1 0o 1 0 2 0 0 0 -1 1 0 b ,
AAt = — 1 0 10 0 0 2 o0 1 0 0 1 and AtA=1T. (23)
6 1 0 1 0 0 0 2 0 1 -1 0
0 -1 0 1 1 0 1 0 2 0 0 O
1 0 1 0 0 -1 0 1 0 2 0 0
1 o0 1 0 O 1 0 -1 0 0 2 0
0o 1 0 -1 1 0 1 0 0 0 0 2]
-2 0 0 0 -1 0 1 o0 0 1 1 O
0 -2 0 0 0 1 0 1 -1 0 o0 1
0 0 -2 0 1 0 -1 0 0 1 1 0
o 0 0 -2 0 1 0 1 1 o0 0 -1
-1 0 1 0 -2 0 0 O 1 0 o0 1
o0 1 0 1 0 -2 0 0O 0 -1 1 0 ,
Ba=al'y g 1 0 0 0 -2 0 1 0 0 1 (28)
0 1 0 1 0 0 0 -2 0 1 -1 0
0 -1 0 1 1 0 1 0 -2 0 0 0
1 0 1 0 0 -1 0 1 0 -2 0 0
1 0 1 0 o0 1 0 -1 0 0 -2 0
o 1 0 -1 1 0 1 0 0 0 0 =2
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In general, the left side of (25) is chosen since a
scheme to move forward in time is desired, but it will
be shown that for a particular choice of the B matrix,
both expressions in (25) can be satisfied. A series of
symmetric matrices, {Ba|Ba € N(A), 2 € R}, can be
determined as (28) (shown on the previous page) and the
symmetric scattering matrix becomes (29) (below). When o =
1/4, the scattering matrix becomes (30) (below), which can be
compared to the symmetrical condensed node TLM method as
follows. In the traditional TLM method, the voltage pulses are
not denoted by their propagation direction but rather by their

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 8, AUGUST 1993

location in each cell. The voltage pulses are numbered from 1
to 12 and are scattered according to

Vitm = Stlm‘/tlm (31)

Where Viim is the vector of pulses V; to Vi2. A transformation
from Vy,,, to the RI’s defined herein can be defined by the use

of Table I. In the present case, we can write
vout = gy (32)

where the extra notations out and in have been used to identify
the fact that the transformation to the old notation is not the

2 0 0 0 -1 0 1 0 0 1 1 0
0o 2 0 0O 0 1 0 1 -1 0 0 1
0 0 2 0 1 0 -1 0 0 1 1 0
0o 0 0 2 o0 1 o0 1 1 0 0 -1
-1 0 1 0 2 0 O 0 1 0 0 1
g _4tl0 1 0 1 0 2 0 0 0 -1 1 0
““" 411 0 -1 0 0O O 2 0 1 0 0 1
o 1 o 1 0 0 0 2 0 1 -1 0
0o -1 06 1 1 o0 1 0 2 0 0 O
1 0 1 0 o0 -1 0 1 0 2 0 0
1 0 1 0 0O 1 0 -1 0 0 2 O
0 1 0 -1 1 0 1 0 0 0 0 2]
2 0 0o 0 -1 0 1 0 0 1 1 0]
0o -2 0 0 0 1 0 1 =1 0 0 1
0o 0 -2 0 1 0 -1 0 0 1 1 0
0 0 0 -2 0 1 o0 1 1 0 0 -1
-1 0 1 0 -2 0 O O 1 0 O 1
0o 1 0 1 0 -2 0 0 0 -1 1 0
el 0 -1 0 0 0 -2 0 1 0 0 1 (29)
0 1 0 1 0 0 0 -2 0 1 -1 0
0 -1 0 1 1 0 1 0 -2 0 0 0
1 0 1 0 O -1 0 1 0 -2 0 0
1 0 1 0 0 1 0 -1 0 0 -2 0
0o 1.0 -1 1 0 1 0 0 0 0 -2
o 0o 0o 0o -1 o 1 0 0 1 1 0]
0 0 0 0 0 1 0 1 -1 0 0 1
0 0 0 0 1 0 -1 0 ©0 1 1 0
0O 0 0o o0 o0 1 o0 1 1 0 0 -1
-1 0 1 0 0 O O 0 1 0 0 1
1lo 1 0 1 o 0 O 0 0 -1 1 0
Ss=511 o -1 0 0 0o 0 0 1 0 0 1 (30)
0o 1 0 1 0 o0 o 0 0 1 -1 0
0 -1 0 1 1 o0 1 0 0 0 0 O
1 o0 1 0 0 -1 06 1 0 0 0 0
1 o0 1 0 O 1 0 -1 0 0 0 0
0 1 0 -1 1 0 1 0 0 0 0 0]
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same for each of these. That is,

A Am/tlm thm, Vitm = Atlm/outvom (33)
[0 0000 000O0OTOT1 0]
000 00O0O0OO0T100
001 0000O0GOGO0TO 0O 0O
000 00100TU0UO0T0 0
000 0O0O0OOU OO0 1

Ao _l00 0000100000

in/tlm 1000 000O0OGO0OGO0TO]|
000 01000UO0GO0GO0O0
0 0000O0OO0GOTL1O0GO0O
000 0O0O0GOT1O0U0T00
000100O0O0GUO0O0TO 0O
(001 00 00O0O0OTO0O0 O
[0 0 001 000 00 0 o0
000 00O0O0O0T1O0TU 00
100000O0O0GOO0GO OO0
000 00O0OO0OGUO0T1TUO0O0
000 00100TU0UO0TUO0 0

4 o001 0000000000

m/out= 19 0 0 0 00 01000 0
00000O0OUOOOGOT1O
000 0O0O0TO0OTO0UO0OT 01
0 00100O0O0TO0GO0TO0O0
001 00O0GO0UO0TUO0TO0OTU 0O
0 0000O0D10U0GO0TO0O
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flow in the propagating waves. Recall that the Poynting vector,
defined as P = E x H can be written as

P = (ByH, — E.H,)i, + (E,H, — E,H.,)d,
+ (EyHy — EyH,)a, = Pya, + Pay + P,
(36)

where P, P,, and P, denote the energy densities flowing
in the z-, y-, and z-directions, respectively. The plane wave
propagation assumption relates the electric field in each Rl to
the magnetic field via the plane wave impedance, that is,

Ee = +ZH, (37)

where the sign is chosen such that E; x (£H.) defines the
direction of propagation by the right-hand rule. For example,
left traveling plane waves (i.e., negative z-direction) give
E, = —ZH,. Using this approximation, the sum of the
squares of the RI’s traveling in the same direction can be
shown to be proportional to the energy density traveling in the
same direction, that is,

[ V2, + V2
Véy + V%z
VDac + VDz 1
Vi, + Vg, 2
Vi + Vi,
| VA, + Vi,

E; -27E,H. + Z°H? + E2 + 2ZE.H, + Z*°H]
B+ 2ZE,H, + Z°H? + E2 - 2ZE.H, + Z*H;
E% +2ZE.H,+ Z*H? + E2 - 2ZE,H, + Z*H?
E:-2ZE,H,+ Z®H? + E2 4+ 2ZE.H, + Z?H?

_(34) E?-2ZE,H, + ZzHé + Eé +2ZE,H, + Z*H?
E2 —2ZE,H, + Z°H. + E2 + 2ZE,H, + Z*H?
and we can express the traditional TLM scattering matrix in (*P z
terms of the present scattering matrix as (35) (below). Since Py
any of these scattering matrices defined by (26) will satisfy =9 ‘]f vl (38)
the condition for uniquely defined ficlds at the integer grid 4
points, some other method of determining the appropriate S, G
is required. One appealing technique is to consider the energy L P
o 1 1 0 0 0 0 0 1 0 =1 0]
10 o0 o0 0 1 0 0 0 -1 0 1
i1 o o0 1 o 6 0 1 o0 0 0 -1
o o 1 0 1 0 -1 0 0O O 1 O
o o0 o 1 o 1 0 -1 060 1 0 0
Stlm = Atlm/outSAin/tlm - % 8 é 8 _01 ;l) (1) 2-) 2 01 S[) g 8 (35)
o o 1 0o -t 0 1 0 0O 0O 1 o0
1 0 0 0 0o -1 0 0 0 1 0 1
0O -1 O 0 1 0 1 0 1 0 0 0
-1 0 0 1 0 0 0 1 0 0 0 1
Lo 1 -1 0 0 o0 0 0 1 0 1 0 |
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pns1i2)

Fig. 1. RI’s propagating on computational grid {(%, 5, %)}

Thus, the total energy density leaving a node can be
represented as the Euclidean norm of the RI’s. If the scattering
matrix is chosen such that the total energy density entering a
grid point is equal to the total energy density leaving that grid
point (i.e., after the scattering event), then this produces the
relations ||V:‘J4k'1 13=1S.VEt! 13 =IVit" I3, which can
be written as

(v ) Vil = (Savitt )T(s Vi)
= (v ) SVl (39)

since S, is symmetric. One possible condition on the scatter-
ing matrix which satisfies this requirement is that S2 = I. If
S2 is expanded for any «, it will be found that the diagonal
terms are all 8a? + 1/2, and the off-diagonal terms are
all either —4a? + 1/4, 4a® — 1/4, or 0, and therefore this
leads to the result that {802 +1/2 =1, —4a* + 1/4 =0} =
o = £(1/4) with associated scattering matrices given by
S_174 = I and Sy, given by (26). The first matrix results
in no scattering at all, while the second results in the same
scattering matrix as in the traditional TLM method (with the
notational differences discussed previously.) Notice that this
choice of scattering matrix allows the satisfaction of both

expressions (25) since now choosing Viit! = 5 /4Vf;,g1
nt+l1” __ 1+ .
as well as Vio° = 5 /4V”k implies

1+ n1t
Vik =SuaVith =S (51/4"”:6 ) Vi
(40)

which is now not a contradiction. Thus S;,, determines the
reverse process as well as the forward process.
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IV. FINITE DIFFERENCE EQUIVALENTS AND
DISPERSION/DISSIPATION ANALYSIS

For the case where Z; = Z;y1 = Zy = Zyy1 = 7, the
transfer event can be written as

Vn+1

s diag(si,si,5;1,5;1,51,51,551,551,

S;7S;,S ! S 1) z]k
~- 7L+
(VLy)H_l,j,kW
Vi- i+1,5,k
(VRy i—1,5,k
(VRz i-1,5,k
(VDz i,5+1,k
— (55: z:,1:+1,k — CV?jk
3,7—1,k
Vs i,5—1,k
(VBw i,5,k+1
VBy i,5,k+1
Viy g k—1
i Vre i,5,k—1 |

QY

where C is the diagonal matrix of forward and backward shift
operators (i.e., S;! represents a shift of —1 units in the z-
direction). The equations developed thus far are combined to
give

n+1

ulbtl = ATV = Aty = Atovy,

ijk ijk

= AtCSVY, = ATC(A4l + B) ( ”k)

i3k

ATCAAT + a1CB) (Vi)

(
(ATCAAT + ATCB) (A(ufyy))
(ATC(AATA) + ATOBA) (u}},)
= (ATCA+ ATCBA) (u},) -

(42)

Now, not only is B € N(A'), but A € N(B), and (42)
becomes

ultt = ATCA(uly) .

z]k (43)

Notice that in the field formulation, the effect of the B matrix
is lost. Therefore, a one-time step finite difference scheme
can only represent the TLM method if Sy is used, and a TLM
method with « other than zero cannot be represented by a one-
time step finite difference scheme. Notice that in [9], Johns
states that there is no one-time step scheme for the traditional
(@ = 1/4) method. A two-time level scheme can be written
by following the same procedure as in (42), but continuing the
procedure for one more time level. Thus,
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Fig. 2. Dispersion of Gaussian plane wave pulses.

n+l _
/u"l,]k

(4fca4’ + ATCB) (Vi)

= ATCAAT (Vi) + ATCB (V)

= AtcAat Aur, +ATCB( ”k)

= AlCA(ul) + A'CB (Vi)

= A'CA(uly) + A'CBO(ViR!)

= A'CA(ufjy) + A'CBOS (Vi)

= A'CA(ujy) + ATCBO(44" + B) (Vig!)

= ATCA(u}) + ATCBCAAT + A*CBCB

(Vi)

= ATCA(uly) +
)

= ATCA(uly) +

n-—1
: (u’z'jk )

and again, using AATA = A and BA = 0, we get

(ATCBCAAT + A'CBCB)

(ATCBCAATA + ATCBCBA)
(44)

(45)

wiit = A'CA(ufyy) + AloBCA(u?)
in which, now, the effect of the B matrix is evident. This con-
stitutes the equivalent finite difference two-time step scheme
for the generalized TLM methods.

The dispersion/dissipation effects of the derived schemes
have been investigated by applying the to a propagating
Gaussian pulse plane wave (see Fig. 2). The plane wave is
assumed to propagate axially through the mesh, and was
generated using the TLM total/scattered field formulation
discussed in [5]. Notice that, except for the case where a =
1/4 (standard TLM), the schemes exhibit dissipation. This also
follows from the energy conservation used in deriving the 1/4
scheme.
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V. CONCLUSIONS

A Series of TLM-type algorithms have been derived di-
rectly from Maxwell’s equations using the approximation
that disturbances within a computational cell, given by the
Riemann invariants, travel as a series of plane waves in the
orthogonal directions. This analysis derives not only one but an
infinite number of TLM-type methods, based on a parameter c,
with one being equivalent to the symmetrical condensed node
method (o = 1/4). The use of the principle of conservation
of power density on the scattering matrices imposes the value
of 1/4 on a. A general formulation of the equivalent finite-
difference schemes for these methods has been given, and all
but one (@ = 0) correspond to a two-time level scheme. Each
of these methods gives different dispersion and dissipation
characteristics which have been investigated numerically.
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